|
電子電路的心臟-晶振2017-11-02 16:35來源: 傳感器技術瀏覽數:40次
我們常把晶振比喻為數字電路的心臟,這是因為,數字電路的所有工作都離不開時鐘信號,晶振直接控制著整個系統,若晶振不運作那么整個系統也就癱瘓了,所以晶振是決定了數字電路開始工作的先決條件。 我們常說的晶振,是石英晶體振蕩器和石英晶體諧振器兩種,他們都是利用石英晶體的壓電效應制作而成。在石英晶體的兩個電極上施加電場會使晶體產生機械變形,反之,如果在晶體兩側施加機械壓力就會在晶體上產生電場。并且,這兩種現象是可逆的。利用這種特性,在晶體的兩側施加交變電壓,晶片就會產生機械振動,同時產生交變電場。這種震動和電場一般都很小,但是在某個特定頻率下,振幅會明顯加大,這就是壓電諧振,類似于我們常見到的LC回路諧振。 作為數字電路中的心臟,晶振在智能產品中是如何發揮作用的呢?以智能家居如空調、窗簾、安防、監控等產品來說,都需要無線傳輸模塊,它們通過藍牙、WIFI或ZIGBEE等協議,將模塊從一端發到另一端,或直接通過手機控制,而晶振就是無線模塊里的核心元件,影響著整系統的穩定性,所以選擇好系統使用的晶振,決定了數字電路的成敗。 由于晶振在數字電路中的重要性,在使用和設計的時候我們需要小心處理: 1、晶振內部存在石英晶體,受到外部撞擊或跌落時易造成石英晶體斷裂破損,進而造成晶振不起振,所以在設計電路時要考慮晶振的可靠安裝,其位置盡量不要靠近板邊、設備外殼等。 2、在手工焊接或機器焊接時,要注意焊接溫度。晶振對溫度比較敏感,焊接時溫度不能過高,并且加熱時間盡量短?
一、問題描述 該產品為野外攝像機,內分核心控制板、sensor 板、攝像頭、SD 存儲卡和電池五部分組成,外殼為塑膠殼,小板僅有兩個接口:DC5V 外接電源接口和數據傳輸的USB 接口。經過輻射測試發現有33MHz 左右的諧波雜訊輻射問題。 原始測試數據如下: 二、分析問題 該產品外殼結構塑膠外殼,是非屏蔽材料,整機測試只有電源線和USB 線引出殼體,難道干擾頻點是由電源線和USB 線輻射出來的嗎?故分別作了一下幾步測試: ( 1 ) 僅在電源線上加磁環,測試結果:改善不明顯; ( 2 ) 僅在USB 線上加磁環,測試結果:改善仍然不明顯; ( 3 ) 在USB 線和電源線都加磁環,測試結果:改善較明顯,干擾頻點整體有所下降。 從上可得,干擾頻點是從兩個接口帶出來的,并非是電源接口或USB 接口的問題,而是內部干擾頻點耦合到這兩個接口所導致的,僅屏蔽某一接口不能解決問題。 經過近場量測發現,干擾頻點來之于核心控制板的一個32.768KHz 的晶振,產生很強的空間輻射,使得周圍的走線和GND 都耦合了32.768KHz 諧波雜訊,再通過接口USB 線和電源線耦合輻射出來。而該晶振的問題在于以下兩點問題所導致的: ( 1 ) 晶振距離板邊太近,易導致晶振輻射雜訊。 ( 2 ) 晶振下方有布信號線,,這易導致信號線耦合晶振的諧波雜訊。 ( 3 ) 濾波器件放在晶振下方,且濾波電容與匹配電阻未按照信號流向排布,使得濾波器件的濾波效果變差。 三、解決對策 根據分析得出以下對策: (1)晶體的濾波電容與匹配電阻靠近CPU 芯片優先放置,遠離板邊; (2)切記不能在晶體擺放區域和下方投影區內布地; (3)晶體的濾波電容與匹配電阻按照信號流向排布,且靠近晶體擺放整齊緊湊; (4)晶體靠近芯片處擺放,兩者間的走線盡量短而直。 可以參考如下圖布局方式: 經整改后,樣機測試結果如下: 四、結論 現今很多系統晶振現今很多系統晶振時鐘頻率高,干擾諧波能量強;干擾諧波除了從其輸入與輸出兩條走線傳導出來,還會從空間輻射出來,若布局不合理,容易造成很強的雜訊輻射問題,而且很難通過其他方法來解決,因此在PCB 板布局時對晶振和CLK 信號線布局非常重要。
(1) 耦合電容應盡量靠近晶振的電源引腳,位置擺放順序:按電源流入方向,依容值從大到小依次擺放,容值最小的電容最靠近電源引腳。 (2) 晶振的外殼必須接地,可以晶振的向外輻射,也可以屏蔽外來信號對晶振的干擾。 (3) 晶振下面不要布線,保證完全鋪地,同時在晶振的300mil范圍內不要布線,這樣可以防止晶振干擾其他布線、器件和層的性能。 (4) 時鐘信號的走線應盡量短,線寬大一些,在布線長度和遠離發熱源上尋找平衡。 (5) 晶振不要放置在PCB板的邊緣,在板卡設計時尤其注意該點。
1) 晶振是有源晶振的簡稱,又叫振蕩器。英文名稱是oscillator。晶體則是無源晶振的簡稱,也叫諧振器。英文名稱是crystal.
MEMS硅晶振采用硅為原材料,采用先進的半導體工藝制造而成。因此在高性能與低成本方面,有明顯于石英的優勢,具體表現在以下方面:
上圖是一個在諧振頻率附近有與晶體諧振器具有相同阻抗特性的簡化電路。其中:C1為動態電容也稱等效串聯電容;L1為動態電感也稱等效串聯電感;R1為動態電阻也稱等效串聯電阻;C0為靜態電容也稱等效并聯電容。 這個等效電路中有兩個最有用的零相位頻率,其中一個是諧振頻率(Fr),另一個是反諧振頻率(Fa)。當晶體元件實際應用于振蕩電路中時,它一般還會與一負載電容相聯接,共同作用使晶體工作于Fr和Fa之間的某個頻率,這個頻率由振蕩電路的相位和有效電抗確定,通過改變電路的電抗條件,就可以在有限的范圍內調節晶體頻率。
1 標稱頻率 指晶體元件規范中所指定的頻率,也即用戶在電路設計和元件選購時所希望的理想工作頻率。 2 調整頻差 基準溫度時,工作頻率相對于標稱頻率的最大允許偏離。常用ppm表示 如果ppm換算成百分號“%”為:1ppm=0.0001%。 但在大多數科技期刊中,已經不使用ppm,而改用千分號“‰”,ppm換算成‰為:1ppm=0.001‰。 ppm是指part per million,同理b,t分別表示billion和trillion。 即1ppm=10^-6數量級,類似的還有ppb,ppt等,分別是-9次和-12次。 3 溫度頻差 4 老化率 5 諧振電阻(Rr) 6 負載諧振電阻(RL) 指晶體元件與規定外部電容相串聯,在負載諧振頻率FL時的電阻。對一給定晶體元體,其負載諧振電阻值取決于和該元件一起工作的負載電容值,串上負載電容后的諧振電阻,總是大于晶體元件本身的諧振電阻。 7 負載電容(CL) 與晶體元件一起決定負載諧振頻率FL的有效外界電容。晶體元件規范中的CL是一個測試條件也是一個使用條件,這個值可在用戶具體使用時根據情況作適當調整,來微調FL的實際工作頻率(也即晶體的制造公差可調整)。但它有一個合適值,否則會給振蕩電路帶來惡化,其值通常采用10pF、15pF 、20pF、30pF、50pF、∝等,其中當CL標為∝時表示其應用在串聯諧振型電路中,不要再加負載電容,并且工作頻率就是晶體的(串聯)諧振頻率Fr。用戶應當注意,對于某些晶體(包括不封裝的振子應用),在某一生產規范既定的負載電容下(特別是小負載電容時),±0.5pF的電路實際電容的偏差就能產生±10×10-6的頻率誤差。因此,負載電容是一個非常重要的訂貨規范指標。 8 靜態電容(C0) 9 動態電容(C1) 10 動態電感(L1) 11 諧振頻率(Fr) 指在規定條件下,晶體元件電氣阻抗為電阻性的兩個頻率中較低的一個頻率。根據等效電路,當不考慮C0的作用,Fr由C1和L1決定,近似等于所謂串聯(支路)諧振頻率(Fs)。這一頻率是晶體的自然諧振頻率,它在高穩晶振的設計中,是作為使晶振穩定工作于標稱頻率、確定頻率調整范圍、設置頻率微調裝置等要求時的設計參數。 12 負載諧振頻率(FL) 指在規定條件下,晶體元件與一負載電容串聯或并聯,其組合阻抗呈現為電阻性時兩個頻率中的一個頻率。在串聯負載電容時,FL是兩個頻率中較低的那個頻率;在并聯負載電容時,FL則是其中較高的那個頻率。對于某一給定的負載電容值(CL),就實際效果,這兩個頻率是相同的;而且 13 品質因數(Q) 14 激勵電平(Level of drive) 15 激勵電平相關性(DLD) 16 DLD2(單位:歐姆) 不同激勵電平下的負載諧振電阻的最大值與最小值之間的差值。(如:從0.1uw~200uw,總共20步)。 17 RLD2(單位:歐姆) 不同激勵電平下的負載諧振電阻的平均值<與諧振電阻Rr的值比較接近,但要大一些>。(如:從0.1uw~200uw,總共20步)。 18 寄生響應 2) SPUR 在最大寄生處的電阻;
1 Package石英振蕩器(SPXO) 不施以溫度控制及溫度補償的石英振蕩器。頻率溫度特性依靠石英振蕩晶體本身的穩定性。 2 溫度補償石英振蕩器(TCXO) 3 電壓控制石英振蕩器(VCXO) 控制外來的電壓,使輸出頻率能夠變化或調變的石英振蕩器。 4 恒溫槽式石英振蕩器(OCXO) 以恒溫槽保持石英振蕩器或石英振蕩晶體在一定溫度,控制其輸出頻率在周圍溫度下也能保持極小變化量之石英振蕩器。 除了以上四種振蕩器外,隨著PLL、Digital、Memory技術的應用,其他功能的多元化石英振蕩器也快速增加。
|